Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(10): 2917-2928, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364776

RESUMO

BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES: We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS: We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS: We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION: Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.


Assuntos
Plaquetas , Inibidor 1 de Ativador de Plasminogênio , Animais , Camundongos , Plaquetas/metabolismo , Fibrinólise , Genômica , Camundongos Endogâmicos C57BL , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Locos de Características Quantitativas , Humanos
2.
Methods Mol Biol ; 2569: 167-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36083448

RESUMO

Over the past three decades, computational capabilities have grown at such a rapid rate that they have given rise to many computationally heavy science fields such as phylogenomics. As increasingly more genomes are sequenced in the three domains of life, larger and more species-complete phylogenetic tree reconstructions are leading to a better understanding of the tree of life and the evolutionary histories in deep times. However, these large datasets pose unique challenges from a modeling and computational perspective: accurately describing the evolutionary process of thousands of species is still beyond the capability of current models, while the computational burden limits our ability to test multiple hypotheses. Thus, it is common practice to reduce the size of a dataset by selecting species to represent a clade (taxon sampling). Unfortunately, this process is subjective, and comparisons of large tree of life studies show that choice and number of species used in a dataset can alter the topology obtained. Thus, taxon sampling is, in itself, a process that needs to be fully investigated to determine its effect on phylogenetic stability. Here, we present the theory and practical application of an automated pipeline that can be easily implemented to explore the effect of taxon sampling on phylogenetic reconstructions. The application of this approach was recently discussed in a study of Terrabacteria and shows its power in investigating the accuracy of deep nodes of a phylogeny.


Assuntos
Evolução Biológica , Genoma , Filogenia
3.
Genetics ; 222(2)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040194

RESUMO

U12-type or minor introns are found in most multicellular eukaryotes and constitute ∼0.5% of all introns in species with a minor spliceosome. Although the biological significance for the evolutionary conservation of U12-type introns is debated, mutations disrupting U12 splicing cause developmental defects in both plants and animals. In human hematopoietic stem cells, U12 splicing defects disrupt proper differentiation of myeloid lineages and are associated with myelodysplastic syndrome, predisposing individuals to acute myeloid leukemia. Mutants in the maize ortholog of RNA binding motif protein 48 (RBM48) have aberrant U12-type intron splicing. Human RBM48 was recently purified biochemically as part of the minor spliceosome and shown to recognize the 5' end of the U6atac snRNA. In this report, we use CRISPR/Cas9-mediated ablation of RBM48 in human K-562 cells to show the genetic function of RBM48. RNA-seq analysis comparing wild-type and mutant K-562 genotypes found that 48% of minor intron-containing genes have significant U12-type intron retention in RBM48 mutants. Comparing these results to maize rbm48 mutants defined a subset of minor intron-containing genes disrupted in both species. Mutations in the majority of these orthologous minor intron-containing genes have been reported to cause developmental defects in both plants and animals. Our results provide genetic evidence that the primary defect of human RBM48 mutants is aberrant U12-type intron splicing, while a comparison of human and maize RNA-seq data identifies candidate genes likely to mediate mutant phenotypes of U12-type splicing defects.


Assuntos
Splicing de RNA , Proteínas de Ligação a RNA , Spliceossomos , Humanos , Íntrons , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Zea mays/genética , Zea mays/metabolismo
4.
Genes (Basel) ; 13(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35885970

RESUMO

The availability of genome data provides a unique window into speciation mechanisms with virtually infinite amounts of information, providing a pathway for a better understanding of major evolutionary questions [...].


Assuntos
Especiação Genética , Genômica , Adaptação Fisiológica/genética , Evolução Biológica , Genoma/genética
5.
Integr Comp Biol ; 61(6): 2218-2232, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33964141

RESUMO

During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: (1) utilizing knowledge of biological systems to better inform eco-evolutionary models, (2) generating models with more accurate predictions, and (3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.


Assuntos
Evolução Biológica , Ecossistema , Animais , Biologia
6.
Gigascience ; 10(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438729

RESUMO

BACKGROUND: The main goal of this collaborative effort is to provide genome-wide data for the previously underrepresented population in Eastern Europe, and to provide cross-validation of the data from genome sequences and genotypes of the same individuals acquired by different technologies. We collected 97 genome-grade DNA samples from consented individuals representing major regions of Ukraine that were consented for public data release. BGISEQ-500 sequence data and genotypes by an Illumina GWAS chip were cross-validated on multiple samples and additionally referenced to 1 sample that has been resequenced by Illumina NovaSeq6000 S4 at high coverage. RESULTS: The genome data have been searched for genomic variation represented in this population, and a number of variants have been reported: large structural variants, indels, copy number variations, single-nucletide polymorphisms, and microsatellites. To our knowledge, this study provides the largest to-date survey of genetic variation in Ukraine, creating a public reference resource aiming to provide data for medical research in a large understudied population. CONCLUSIONS: Our results indicate that the genetic diversity of the Ukrainian population is uniquely shaped by evolutionary and demographic forces and cannot be ignored in future genetic and biomedical studies. These data will contribute a wealth of new information bringing forth a wealth of novel, endemic and medically related alleles.


Assuntos
Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Genoma , Genômica , Humanos , Ucrânia
7.
Front Genet ; 11: 252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265987

RESUMO

Using calibrations to obtain absolute divergence times is standard practice in molecular clock studies. While the use of primary (e.g., fossil) calibrations is preferred, this approach can be limiting because of their rarity in fast-growing datasets. Thus, alternatives need to be explored, such as the use of secondary (molecularly-derived) calibrations that can anchor a timetree in a larger number of nodes. However, the use of secondary calibrations has been discouraged in the past because of concerns in the error rates of the node estimates they produce with an apparent high precision. Here, we quantify the amount of errors in estimates produced by the use of secondary calibrations relative to true times and primary calibrations placed on distant nodes. We find that, overall, the inaccuracies in estimates based on secondary calibrations are predictable and mirror errors associated with primary calibrations and their confidence intervals. Additionally, we find comparable error rates in estimated times from secondary calibrations and distant primary calibrations, although the precision of estimates derived from distant primary calibrations is roughly twice as good as that of estimates derived from secondary calibrations. This suggests that increasing dataset size to include primary calibrations may produce divergence times that are about as accurate as those from secondary calibrations, albeit with a higher precision. Overall, our results suggest that secondary calibrations may be useful to explore the parameter space of plausible evolutionary scenarios when compared to time estimates obtained with distant primary calibrations.

8.
Mol Biol Evol ; 37(3): 933-939, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31848603

RESUMO

A description of the genetic makeup of a species based on a single genome is often insufficient because it ignores the variability in gene repertoire among multiple strains. The estimation of the pangenome of a species is a solution to this issue as it provides an overview of genes that are shared by all strains and genes that are present in only some of the genomes. These different sets of genes can then be analyzed functionally to explore correlations with unique phenotypes and adaptations. This protocol presents the usage of Roary, a Linux-native pangenome application. Roary is a straightforward software that provides 1) an overview about core and accessory genes for those interested in general trends and, also, 2) detailed information on gene presence/absence in each genome for in-depth analyses. Results are provided both in text and graphic format.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Biologia Computacional/métodos , Bactérias/genética , Fenótipo , Filogenia , Software , Especificidade da Espécie
9.
Bioinformatics ; 35(19): 3608-3616, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30859177

RESUMO

MOTIVATION: The promise of higher phylogenetic stability through increased dataset sizes within tree of life (TOL) reconstructions has not been fulfilled. Among the many possible causes are changes in species composition (taxon sampling) that could influence phylogenetic accuracy of the methods by altering the relative weight of the evolutionary histories of each individual species. This effect would be stronger in clades that are represented by few lineages, which is common in many prokaryote phyla. Indeed, phyla with fewer taxa showed the most discordance among recent TOL studies. We implemented an approach to systematically test how the identity of taxa among a larger dataset and the number of taxa included affected the accuracy of phylogenetic reconstruction. RESULTS: Utilizing an empirical dataset within Terrabacteria we found that even within scenarios consisting of the same number of taxa, the species used strongly affected phylogenetic stability. Furthermore, we found that trees with fewer species were more dissimilar to the tree produced from the full dataset. These results hold even when the tree is composed by many phyla and only one of them is being altered. Thus, the effect of taxon sampling in one group does not seem to be buffered by the presence of many other clades, making this issue relevant even to very large datasets. Our results suggest that a systematic evaluation of phylogenetic stability through taxon resampling is advisable even for very large datasets. AVAILABILITY AND IMPLEMENTATION: https://github.com/BlabOaklandU/PATS.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Filogenia , Bactérias
10.
Mol Biol Evol ; 36(4): 811-824, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689923

RESUMO

New species arise from pre-existing species and inherit similar genomes and environments. This predicts greater similarity of the tempo of molecular evolution between direct ancestors and descendants, resulting in autocorrelation of evolutionary rates in the tree of life. Surprisingly, molecular sequence data have not confirmed this expectation, possibly because available methods lack the power to detect autocorrelated rates. Here, we present a machine learning method, CorrTest, to detect the presence of rate autocorrelation in large phylogenies. CorrTest is computationally efficient and performs better than the available state-of-the-art method. Application of CorrTest reveals extensive rate autocorrelation in DNA and amino acid sequence evolution of mammals, birds, insects, metazoans, plants, fungi, parasitic protozoans, and prokaryotes. Therefore, rate autocorrelation is a common phenomenon throughout the tree of life. These findings suggest concordance between molecular and nonmolecular evolutionary patterns, and they will foster unbiased and precise dating of the tree of life.


Assuntos
Evolução Biológica , Técnicas Genéticas , Modelos Genéticos , Aprendizado de Máquina , Fatores de Tempo
11.
Genome Biol Evol ; 10(6): 1631-1636, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878203

RESUMO

The RelTime method estimates divergence times when evolutionary rates vary among lineages. Theoretical analyses show that RelTime relaxes the strict molecular clock throughout a molecular phylogeny, and it performs well in the analyses of empirical and computer simulated data sets in which evolutionary rates are variable. Lozano-Fernandez et al. (2017) found that the application of RelTime to one metazoan data set (Erwin et al. 2011) produced equal rates for several ancient lineages, which led them to speculate that RelTime imposes a strict molecular clock for deep animal divergences. RelTime does not impose a strict molecular clock. The pattern observed by Lozano-Fernandez et al. (2017) was a result of the use of an option to assign the same rate to lineages in RelTime when the rates are not statistically significantly different. The median rate difference was 5% for many deep metazoan lineages for the Erwin et al. (2011) data set, so the rate equality was not rejected. In fact, RelTime analyses with and without the option to test rate differences produced very similar time estimates. We also found that the Bayesian time estimates vary widely depending on the root priors assigned, and that the use of less restrictive priors produces Bayesian divergence times that are concordant with those from RelTime for the Erwin et al. (2011) data set. Therefore, it is prudent to discuss Bayesian estimates obtained under a range of priors in any discourse about molecular dating, including method comparisons.


Assuntos
Variação Genética/genética , Animais , Teorema de Bayes , Simulação por Computador , Evolução Molecular , Fósseis , Especiação Genética , Modelos Genéticos , Filogenia , Fatores de Tempo
12.
Mol Biol Evol ; 34(2): 437-446, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27965376

RESUMO

The increasing size of timetrees in recent years has led to a focus on diversification analyses to better understand patterns of macroevolution. Thus far, nearly all studies have been conducted with eukaryotes primarily because phylogenies have been more difficult to reconstruct and calibrate to geologic time in prokaryotes. Here, we have estimated a timetree of 11,784 'species' of prokaryotes and explored their pattern of diversification. We used data from the small subunit ribosomal RNA along with an evolutionary framework from previous multi-gene studies to produce three alternative timetrees. For each timetree we surprisingly found a constant net diversification rate derived from an exponential increase of lineages and showing no evidence of saturation (rate decline), the same pattern found previously in eukaryotes. The implication is that prokaryote diversification as a whole is the result of the random splitting of lineages and is neither limited by existing diversity (filled niches) nor responsive in any major way to environmental changes.


Assuntos
Evolução Biológica , Modelos Genéticos , Células Procarióticas/fisiologia , Animais , Eucariotos/genética , Evolução Molecular , Especiação Genética , Variação Genética , Filogenia
13.
BMC Evol Biol ; 16: 47, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923229

RESUMO

BACKGROUND: Low complexity regions (LCRs) are a ubiquitous feature in genomes and yet their evolutionary history and functional roles are unclear. Previous studies have shown contrasting evidence in favor of both neutral and selective mechanisms of evolution for different sets of LCRs suggesting that modes of identification of these regions may play a role in our ability to discern their evolutionary history. To further investigate this issue, we used a multiple threshold approach to identify species-specific profiles of proteome complexity and, by comparing properties of these sets, determine the influence that starting parameters have on evolutionary inferences. RESULTS: We find that, although qualitatively similar, quantitatively each species has a unique LCR profile which represents the frequency of these regions within each genome. Inferences based on these profiles are more accurate in comparative analyses of genome complexity as they allow to determine the relative complexity of multiple genomes as well as the type of repetitiveness that is most common in each. Based on the multiple threshold LCR sets obtained, we identified predominant evolutionary mechanisms at different complexity levels, which show neutral mechanisms acting on highly repetitive LCRs (e.g., homopolymers) and selective forces becoming more important as heterogeneity of the LCRs increases. CONCLUSIONS: Our results show how inferences based on LCRs are influenced by the parameters used to identify these regions. Sets of LCRs are heterogeneous aggregates of regions that include homo- and heteropolymers and, as such, evolve according to different mechanisms. LCR profiles provide a new way to investigate genome complexity across species and to determine the driving mechanism of their evolution.


Assuntos
Apicomplexa/genética , Evolução Molecular , Genoma de Protozoário , Composição de Bases , Biologia Computacional , Modelos Lineares , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie
14.
Mol Biol Evol ; 32(7): 1907-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808541

RESUMO

We present a procedure to test the effect of calibration priors on estimated times, which applies a recently developed calibration-free approach (RelTime) method that produces relative divergence times for all nodes in the tree. We illustrate this protocol by applying it to a timetree of metazoan diversification (Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091-1097.), which placed the divergence of animal phyla close to the time of the Cambrian explosion inferred from the fossil record. These analyses revealed that the two maximum-only calibration priors in the pre-Cambrian are the primary determinants of the young divergence times among animal phyla in this study. In fact, these two maximum-only calibrations produce divergence times that severely violate minimum boundaries of almost all of the other 22 calibration constraints. The use of these 22 calibrations produces dates for metazoan divergences that are hundreds of millions of years earlier in the Proterozoic. Our results encourage the use of calibration-free approaches to identify most influential calibration constraints and to evaluate their impact in order to achieve biologically robust interpretations.


Assuntos
Evolução Molecular , Filogenia , Animais , Calibragem , Fatores de Tempo
15.
Mol Biol Evol ; 31(3): 605-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24356560

RESUMO

The high frequency of alternative splicing among the serine/arginine-rich (SR) family of proteins in plants has been linked to important roles in gene regulation during development and in response to environmental stress. In this article, we have searched and manually annotated all the SR proteins in the genomes of maize and sorghum. The experimental validation of gene structure by reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed, with few exceptions, that SR genes produced multiple isoforms of transcripts by alternative splicing. Despite sharing high structural similarity and conserved positions of the introns, the profile of alternative splicing diverged significantly between maize and sorghum for the vast majority of SR genes. These include many transcript isoforms discovered by RT-PCR and not represented in extant expressed sequence tag (EST) collection. However, we report the occurrence of various maize and sorghum SR mRNA isoforms that display evolutionary conservation of splicing events with their homologous SR genes in Arabidopsis and moss. Our data also indicate an important role of both 5' and 3' untranslated regions in the regulation of SR gene expression. These observations have potentially important implications for the processes of evolution and adaptation of plants to land.


Assuntos
Processamento Alternativo/genética , Sequência Conservada/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Bryopsida/genética , Evolução Molecular , Éxons/genética , Variação Genética , Íntrons/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Homologia de Sequência do Ácido Nucleico , Fatores de Processamento de Serina-Arginina , Sorghum/genética , Zea mays/genética
16.
PLoS One ; 8(11): e81016, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312259

RESUMO

Presence of overlapping genes (OGs) is a common phenomenon in bacterial genomes. Most frequently, overlapping genes share coding regions with as few as one nucleotide to as many as thousands of nucleotides. Overlapping genes are often co-regulated, transcriptionally and translationally. Overlapping genes are also subject to the whims of evolution, as the gene overlap is known to be disrupted in some species/strains and participating genes are sometimes lost in independent lineages. Therefore, a better understanding of evolutionary patterns and rates of the disruption of overlapping genes is an important component of genome structure and evolution of gene function. In this study, we investigate the fate of ancestrally overlapping genes in complete genomes from 15 contemporary strains of Salmonella species. We find that the fates of overlapping genes inside and outside operons are distinctly different. A larger fraction of overlapping genes inside operons conserves their overlap as compared to gene pairs outside of the operons (average 0.89 vs. 0.83 per genome). However, when overlapping genes in the operons separate, one partner is lost more frequently than in those separated genes outside of operons (average 0.02 vs. 0.01 per genome). We also investigate the fate of a pan set of overlapping genes at the present and ancestral nodes over a phylogenetic tree based on genome sequence data, respectively. We propose that co-regulation plays important roles on the fates of genes. Furthermore, a vast majority of disruptions occurred prior to the common ancestor of all 15 Salmonella strains, which enables us to obtain an estimate of disruptions between Salmonella and E. coli.


Assuntos
Evolução Molecular , Homologia de Genes , Salmonella/genética , Escherichia coli/genética , Genoma , Filogenia , Salmonella/classificação
17.
Proc Natl Acad Sci U S A ; 109(47): 19333-8, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129628

RESUMO

Molecular dating of species divergences has become an important means to add a temporal dimension to the Tree of Life. Increasingly larger datasets encompassing greater taxonomic diversity are becoming available to generate molecular timetrees by using sophisticated methods that model rate variation among lineages. However, the practical application of these methods is challenging because of the exorbitant calculation times required by current methods for contemporary data sizes, the difficulty in correctly modeling the rate heterogeneity in highly diverse taxonomic groups, and the lack of reliable clock calibrations and their uncertainty distributions for most groups of species. Here, we present a method that estimates relative times of divergences for all branching points (nodes) in very large phylogenetic trees without assuming a specific model for lineage rate variation or specifying any clock calibrations. The method (RelTime) performed better than existing methods when applied to very large computer simulated datasets where evolutionary rates were varied extensively among lineages by following autocorrelated and uncorrelated models. On average, RelTime completed calculations 1,000 times faster than the fastest Bayesian method, with even greater speed difference for larger number of sequences. This speed and accuracy will enable molecular dating analysis of very large datasets. Relative time estimates will be useful for determining the relative ordering and spacing of speciation events, identifying lineages with significantly slower or faster evolutionary rates, diagnosing the effect of selected calibrations on absolute divergence times, and estimating absolute times of divergence when highly reliable calibration points are available.


Assuntos
Evolução Molecular , Variação Genética , Filogenia , Simulação por Computador , Bases de Dados Genéticas , Fatores de Tempo
18.
Biol Lett ; 8(5): 853-5, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22809723

RESUMO

Monitor lizards are emblematic reptiles that are widely distributed in the Old World. Although relatively well studied in vertebrate research, their biogeographic history is still controversial. We constructed a molecular dataset for 54 anguimorph species, including representatives of all families with detailed sampling of the Varanidae (38 species). Our results are consistent with an Asian origin of the Varanidae followed by a dispersal to Africa 41 (49-33) Ma, possibly via an Iranian route. Another major event was the dispersal of monitors to Australia in the Late Eocene-Oligocene 32 (39-26) Ma. This divergence estimate adds to the suggestion that Australia was colonized by several squamate lineages prior to the collision of the Australian plate with the Asian plate starting 25 Ma.


Assuntos
Evolução Molecular , África , Animais , Australásia , Teorema de Bayes , Evolução Biológica , Biologia Computacional/métodos , Geografia , Funções Verossimilhança , Lagartos , Filogenia , Software , Especificidade da Espécie , Fatores de Tempo
19.
Mol Biol Evol ; 29(2): 457-72, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21873298

RESUMO

Phylogenomics refers to the inference of historical relationships among species using genome-scale sequence data and to the use of phylogenetic analysis to infer protein function in multigene families. With rapidly decreasing sequencing costs, phylogenomics is becoming synonymous with evolutionary analysis of genome-scale and taxonomically densely sampled data sets. In phylogenetic inference applications, this translates into very large data sets that yield evolutionary and functional inferences with extremely small variances and high statistical confidence (P value). However, reports of highly significant P values are increasing even for contrasting phylogenetic hypotheses depending on the evolutionary model and inference method used, making it difficult to establish true relationships. We argue that the assessment of the robustness of results to biological factors, that may systematically mislead (bias) the outcomes of statistical estimation, will be a key to avoiding incorrect phylogenomic inferences. In fact, there is a need for increased emphasis on the magnitude of differences (effect sizes) in addition to the P values of the statistical test of the null hypothesis. On the other hand, the amount of sequence data available will likely always remain inadequate for some phylogenomic applications, for example, those involving episodic positive selection at individual codon positions and in specific lineages. Again, a focus on effect size and biological relevance, rather than the P value, may be warranted. Here, we present a theoretical overview and discuss practical aspects of the interplay between effect sizes, bias, and P values as it relates to the statistical inference of evolutionary truth in phylogenomics.


Assuntos
Evolução Molecular , Genômica/métodos , Filogenia , Animais , Biometria , Variação Genética , Humanos , Modelos Genéticos , Modelos Teóricos , Família Multigênica , Alinhamento de Sequência , Análise de Sequência de DNA , Estatística como Assunto
20.
BMC Evol Biol ; 11: 299, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21992100

RESUMO

BACKGROUND: Timing the origin of human malarias has been a focus of great interest. Previous studies on the mitochondrial genome concluded that Plasmodium in primates, including those parasitic to humans, radiated relatively recently during a process where host switches were common. Those investigations, however, assumed constant rate of evolution and tightly bound (fixed) calibration points based on host fossils or host distribution. We investigate the effect of such assumptions using different molecular dating methods. We include parasites from Lemuroidea since their distribution provides an external validation to time estimates allowing us to disregard scenarios that cannot explain their introduction in Madagascar. RESULTS: We reject the assumption that the Plasmodium mitochondrial genome, as a unit or each gene separately, evolves at a constant rate. Our analyses show that Lemuroidea parasites are a monophyletic group that shares a common ancestor with all Catarrhini malarias except those related to P. falciparum. However, we found no evidence that this group of parasites branched with their hosts early in the evolution of primates. We applied relaxed clock methods and different calibrations points to explore the origin of primate malarias including those found in African apes. We showed that previous studies likely underestimated the origin of malarial parasites in primates. CONCLUSIONS: The use of fossils from the host as absolute calibration and the assumption of a strict clock likely underestimate time when performing molecular dating analyses on malarial parasites. Indeed, by exploring different calibration points, we found that the time for the radiation of primate parasites may have taken place in the Eocene, a time consistent with the radiation of African anthropoids. The radiation of the four human parasite lineages was part of such events. The time frame estimated in this investigation, together with our phylogenetic analyses, made plausible a scenario where gorillas and humans acquired malaria from a Pan lineage.


Assuntos
Lemuridae/parasitologia , Malária/parasitologia , Filogenia , Plasmodium/genética , Animais , Evolução Biológica , Genoma Mitocondrial , Humanos , Madagáscar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...